
 International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011 1
 ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

Translation of Software Requirements
Hanan Elazhary

Abstract—Stakeholders typically speak and express software requirements in their native languages. On the other hand, software engineers
typically express software requirements in English to programmers who program using English-like programming languages. Translation of
software requirements between the native languages of the stakeholders and English introduces further ambiguities. This calls for a system
that simplifies translation of software requirements while minimizing ambiguities. Unfortunately, this problem has been overlooked in the
literature. This paper introduces a system designed to facilitate translation of requirements between English and Arabic. The system can also
facilitate the analysis of software requirements written in Arabic. This is achieved through enforcing writing software requirements statements
using templates. Templates are selected such that they enforce following best practices in writing requirements documents.

Index Terms— Requirements, Software Engineering, Translation

—————————— ——————————

1 INTRODUCTION
OFTWARE requirements engineering is concerned with
understanding and specifying the services and constraints
of a given software system. It involves software require-

ments elicitation and specification [1]. Elicitation of software
requirements from stakeholders typically results in user re-
quirements, which are natural language statements that de-
scribe the high-level goals of a given software system [2].
Analysis of natural language user requirements is an important
activity since imprecision in this stage causes errors in later
stages. Requirements imprecision is at least an order of magni-
tude more expensive to correct when undetected until late
software engineering stages [3]. Thus, focusing on improving
the precision of the elicited user requirements in the first cycle
is one of the ambitious aims of software engineering [4]. One of
the main causes of imprecision is the ambiguity of natural lan-
guages used to express the user requirements [5]. To minimize
ambiguity, a number of best practices in writing requirements
documents have been proposed by experts [6-9]. These practic-
es include:

Maintain terminological consistency and clarity by re-
stricting action and actor descriptions to terms that are
clearly defined in a glossary.
Do not use different phrases to refer to the same entity
(For example, do not use Order Processing System and
Order Entry System to refer to the same system).
Avoid using phrases, such as “easy to use”, whose
meaning is subjective and leads to ambiguity.
Write each requirement as a single separate sentence.
Write complete sentences rather than bulleted buzz
phrases.
Write complete active-voice sentences which clearly
specify the actor/agent and the action.
Write requirements sentences in a consistent fashion us-
ing a standard set of syntaxes with each syntax-type
corresponding to and signaling different kinds of re-
quirements.
Associate a unique identifier with each requirement.

While these practices are relatively easy to state and under-
stand, it seems fairly difficult for requirements engineers to
consistently apply them throughout requirements documents

with thousands of requirements. Thus, some tools in the litera-
ture have been developed to help users adhere to best practices
in writing requirements documentation. This also simplifies
the automatic analysis of requirements documents written in
natural language and allows generating warning messages
when the requirements do not conform to best practices [9].
One of the problems that have been overlooked in the litera-
ture is the problem of software requirements translation.
Stakeholders typically speak their native languages, while re-
quirements documents are typically written in English and
software programs are typically developed in English-like pro-
gramming languages. The problem is that the translation of
software requirements from the native language of stakehold-
ers to English introduces further ambiguities. Whenever errors
are discovered in later stages of the software engineering
process, suggested modifications of the software requirements
result. To negotiate these modifications with the stakeholders,
modified requirements need to be translated between English
and the native language of the stakeholders back and forth.
This can introduce more ambiguities that complicate the prob-
lem even more.
To address this problem, we suggest implementing systems
that helps users adhere to best practices in writing require-
ments documents using different natural languages. This sim-
plifies analyzing requirements documents in the natural lan-
guage of the stakeholders. By specifying the mappings be-
tween the different developed systems, we allow translation of
software requirements between different natural languages
while minimizing ambiguities. In this paper, we introduce the
Arabic Requirements Analysis Tool (ARAT) system that has
been designed to handle software requirements in Arabic. The
reason for selecting the Arabic language is that it is the official
language of hundreds of millions of people in the Middle East
and North Africa. It is expected that a large number of these
targeted users would benefit from ARAT. We also specify
mappings between our system and a similar system called Re-
quirements Analysis Tool (RAT) [9]. RAT handles require-
ments written in English. Mappings simplify translation of
natural language requirements between English and Arabic,
while minimizing ambiguities.

S

http://www.ijser.org/

2 International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

The paper is organized as follows: Section 2 describes related
research in the literature. Section 3 describes the RAT system
and Section 4 describes the ARAT system and how the Arabic
requirements are analyzed using it. Section 5 provides exam-
ples that illustrate the mappings between the English syntaxes
in the RAT system and the Arabic syntaxes in the ARAT sys-
tem. The examples also illustrate how translation is performed

between English and Arabic requirements accordingly while

minimizing ambiguities. Finally, Section 6 provides conclu-
sions and directions for future research.

2 REALTED WORK

Many tools in the literature have been developed to automati-
cally analyze natural language software requirements. Lami
[10] and Hussain et al. [11] developed systems that can auto-
matically detect potential imprecision in natural language
software requirements through indicators such as weak verbs.
But, these systems don’t assist in correcting any imprecision.
Another approach in the literature attempts to avoid the intro-
duction of imprecision while the software requirements are
being written by imposing the use of natural language pat-
terns. Some of these have focused on developing natural lan-
guage patterns for specific domains such as database systems
[12], scenarios [13], and embedded systems [5]. General pur-
pose systems include Raven [14], which can analyze use cases.
Jain et al. [9] developed the general-purpose RAT system that
imposes the use of specific natural language patterns that help
users adhere to best practices in writing software requirements
in different situations and can provide useful advices.
The REAS system [15] attempts to integrate these two ap-
proaches intelligently to exploit their advantages and avoid
their disadvantages, but cannot help in the translation of re-

quirements. Thus, the prposed system emulates the RAT sys-
tem and uses the analogy ti simplify the translation of re-
quirements between Arabic and English while minimizing am-
biguities.

3 THE RAT SYSTEM

In this section, we describe the structure of an English re-
quirements document according to the RAT system and dis-
cuss how the requirements document is analyzed accordingly.

3.1 User-Defined Glossaries
User-defined glossaries should be created to define valid enti-
ties and actions in the requirements document. This helps re-
quirements engineers adhere to one of the best practices in
writing requirements documents; that is using entities and ac-
tions consistently. As will be explained later in Section 3.3, the
terms in the glossaries will also be used as placeholders that
help in the analysis of the requirements.
The entity glossary defines all entities in the requirements doc-
ument. It also specifies whether each entity is an agent that can
perform actions or not. Agents and non-agents will be referred
to as agents and entities respectively throughout the paper.
Snapshots of an entity glossary and an action glossary are
shown in Tables 1 and 2 respectively.

3.2 Best Practices Syntaxes
A set of syntaxes has been defined in the RAT system to help
requirements engineers adhere to best practices in writing re-
quirements documents as explained in Section 1. These syntax-
es are as follows:

(a) The syntax <Agent Phrase> <“shall” | “must” | “will”>
<Action Phrase> is used to express a requirement that an
agent is responsible for carrying out some action. For
example: The Web server must inform administrator of
failed login attempts.

(b) The syntax <Agent Phrase> <“shall” | “must” | “will”>
“be able to” <Action Phrase> is used to express a re-
quirement that an agent should have the ability to per-
form an action. For example: The payroll system shall
be able to deduct loan amounts from paychecks.

(c) The syntax <Agent Phrase> <“shall” | “must” |“will”>
<“allow” | “permit”> <Agent Phrase> “to” <Action
Phrase> is used to express a requirement that an agent
should provide another agent with the capability to
perform an action. For example: The order processing
system must permit administrator to view daily trans-
actions.

(d) The syntax <Agent Phrase> <“shall” | “will” | “may”>
<“only” | “not”> <Action Phrase> <“when” | “if”> <con-
dition> is used to express imposed conditions or con-
straints on actions performed by agents. For example:
The account management system shall only close an ac-
count if the current balance is zero.

(e) The syntax “Only” <Agent Phrase> <“may” | “maybe”>
<Action Phrase> is used to express imposed conditions
on agents who may perform an action or to whom an
action may be performed. For example: Only the pay-
roll employees may access the payroll database.

TABLE 1
A SNAPSHOT OF AN ENTITY GLOSSARY

Entity Descriptor Explanation Is
Agent

order processing
system

System for processing
orders

Yes

Web server HTTP Web Server Yes
finance department

user
User from finance

department
Yes

chemical containers Containers that store acids No
customer standing The status of the customer No

TABLE 2
A SNAPSHOT OF AN ACTION GLOSSARY

Action Descriptor Explanation
process payroll Action for processing of payroll.

inform administrator Action for sending e-mail
notification to the administrator.

send contracts data Action for transfer of contract
data.

Display Rendering an item on screen.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011 3
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

(f) The syntax <Entity Phrase | Agent Phrase> “must” <“al-
ways” | “never” | “not”> <“be” | “have”> <Value
Phrase> is used to express imposed constraints on
attributes or values of attributes of entities or agents.
For example: The customer standing must always be
gold, silver, or bronze.

(g) The syntax <Entity Phrase | Agent Phrase> “is” <“defined
as” | “classified as”> < Entity Phrase> is used to express
a definition of an entity or an agent. For example: The
total sales value is defined as total item value plus sales
tax.

(h) The syntax <Entity Phrase | Agent Phrase> <“is” | “is
not”> <Action Phrase> is used to express policies that
should be adhered to. For example: The sales tax is
computed on instate shipments.

It is clear that each category of requirements is expressed by a
specific syntax type with different keywords. This simplifies
understanding the intent of each requirement and its analysis
as explained in Section 3.3. It should be noted that these syn-
taxes can be written in the format of the conditional syntax (d).

3.3 Analyzing Requirements
RAT uses a two phased approach for the analysis of the re-
quirements document: 1) lexical analysis and 2) syntactic anal-
ysis.

Fig. 1. A state machine for syntax type (a) of the RAT system [9].

3.3.1 Lexical analysis
A lexical analyzer breaks down a given requirement into a set
of tokens: agent phrases, entity phrases, action phrases, or
modal phrases formed of keywords such as “shall”, “will” and
“shall be able to”. For example, the following statement “The
SAP system shall send the vendor data to the order processing
system” is tokenized into: the agent phrase “The SAP system”,
the modal phrase “shall”, the action phrase “send”, the entity
phrase “the vendor data”, the unknown phrase “to” and the
agent phrase “the order processing system”. After tokeniza-
tion, the requirement is classified into one of the syntax types
based on the modal phrase(s). Thus, according to the above

modal phrase “shall”, the requirement follows syntax type (a).
3.3.2 Syntactic analysis
The syntactic analyzer has a different sate machine to validate
each syntax type. The tokenized requirement is run through
the corresponding state machine. A requirement is treated as
syntactically correct when the state machine successfully tran-
sitions from the start state to a valid final state. In the above
example, the state machine shown in Figure 1 is used. The to-
ken stream for the requirement will end up in “Action State”
and so will be treated as a valid requirement.
For every error state, there is a predefined warning message
that is displayed to the user. The statement of each warning
message explains why the requirement deviates from best
practices in writing requirements documents. Table 3 shows
the warning messages corresponding to different error states in
the above state machine. For example, the statement “shall dis-
play error messages in new window” halts in “Missing Agent
State” since it lacks an agent phrase in the beginning. The gen-

erated warning message is “This requirement lacks an agent
before ‘shall’. It can be confusing to leave the agent implicit.”
3.3.3 Early Deployment Results
Eleven real industrial software projects have been used to as-
sess the tool. They used RAT to make changes to the require-
ments based on the warning messages generated by RAT. This
resulted in:

10-30% reduction in time required to transform notes
taken in interview sessions to well formed require-
ments.
30-50% reduction in time needed to review require-
ments.
5% estimated reduction in overall budget, due to ex-
pected reduction in requirements defects and associated
reduction in rework.

TABLE 3
ERROR STATES AND THE CORRESPONDING WARNING MESSAGES

Error State Warning Message
Missing
Agent
State

This requirement lacks an agent before
'<variable at which error occurs>'. It can be

confusing to leave the agent implicit.
Unknown

Action
State

This requirement contains '<variable at which
error occurs>' where an action is expected, but
'<variable at which fault occurs>' is not in the

action glossary.
Unknown

Agent
State

This requirement contains '<variable at which
error occurs>' where an agent is expected, but
'<variable at which fault occurs>' is not in the

entity glossary.
Non Agent

Entity
State

This requirement contains '<variable at which
error occurs>' where an agent is expected.
'<variable at which error occurs>' is in the
entity glossary but is not designated as an

agent.
Missing
Action
State

This requirement lacks an action before
'<variable at which error occurs>'. It can be

confusing to leave the action implicit.

http://www.ijser.org/

4 International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

4 THE ARAT SYSTEM

The ARAT system is an Arabic version of the RAT system. The
advantage of this system is twofold. First, it has similar advan-
tages as the RAT system but with respect to Arabic require-
ment documents. In other words, it helps requirements engi-
neer adhere to best practices in writing Arabic requirements
documents and simplifies the analysis of these documents.
Second, due to the analogy between both systems, it allows the
translation of software requirements between Arabic and Eng-
lish while resolving many ambiguities. Thus, an Arabic syntax
(and a corresponding state machine) in the ARAT system has
been designed corresponding to each English syntax (and its
corresponding state machine) in the RAT system. While read-
ing the Arabic syntaxes, it should be noted that:

Arabic statements and thus Arabic syntaxes are written
from the right to the left.
Some syntaxes in RAT are decomposed into two syn-
taxes in ARAT due to the nature of the Arabic language.
Some model phrases in RAT are represented by two
modal phrases in the corresponding syntax in ARAT
due to the nature of the Arabic language. For example
“be able to” is represented by "" and "" for
masculine and feminine respectively.
The meanings of the Arabic modal phrases in these syn-
taxes are provided in the modal phrases dictionary
shown in Table 4.
The arrangements of the components of a given syntax
in ARAT may be different from that of the correspond-
ing syntax in RAT due to the nature of the Arabic lan-
guage.

The ARAT Arabic syntaxes (corresponding to the RAT English
syntaxes described in Section 3.2) are as follows:

)a(<Agent Phrase>>" " |""<<Action Phrase>
)b(<Agent Phrase>>" " |""> <" " |

"" <<Action Phrase>
)c(<Agent Phrase>>" " |""> <" " |"" <

<Agent Phrase>" "<Action Phrase>.
)d(<Agent Phrase>" ">" " |"" <

<Action Phrase>>" " |" " |""<<condition>
<Agent Phrase>>" " |""

<Action Phrase>>" " |" " |""<<condition>
)e(" "<Agent Phrase>""<Action Phrase>
)f(<Entity Phrase | Agent Phrase>>" " |" " |"" <

" ">" " |" " |" " |""<
<Value Phrase>

)g(<Entity Phrase | Agent Phrase>>" " |" " |
" " |""<<Entity Phrase>

)h(<Entity Phrase | Agent Phrase><Action Phrase>
<Entity Phrase | Agent Phrase>""<Action Phrase>

As an example of analyzing Arabic requirements in ARAT,
consider the following Arabic statement

"" . This statement
is tokenized into: the agent phrase "" , the modal phrase

"" , the action phrase "" , the entity phrase "" ,
the unknown phrase "" , and the agent phrase "
" . According to the above modal phrase " " , the re-
quirement follows syntax type (a). When this token stream is
run through the corresponding state machine, it ends up in
“Action State” and so is treated as a valid requirement.
In the next section, we provide examples that illustrate the
mappings between the English syntaxes in the RAT system and
the Arabic syntaxes in the ARAT system. The examples also
illustrate how translation is performed between English and
Arabic requirements accordingly while resolving many ambi-
guities.

5 TRANSLATION BETWEEN ARABIC AND ENGLISH RE-
QUIREMENTS

Translating a given statement between RAT and ARAT sys-
tems is done by following the following steps:

Break down the statement into a set of tokens.
Specify the corresponding syntax.
Translate each modal phrase according to the modal
phrases dictionary shown in table 4.
Interpret the unknown phrases and rearrange the
statement according to the corresponding goal syntax
(RAT syntax if translating from Arabic to English and
ARAT syntax if translating from English to Arabic).
The rest is left to the software engineer to resolve.

This is illustrated by few examples. The first example involves
translating Arabic statements to English. Because the reader
expects to read mainly English, the rest of the examples will
involve translating English statements to Arabic.

5.1 Example 1
Consider the following Arabic statement:

"" . This statement
is tokenized into: the agent phrase "" , the modal phrase

TABLE 4
THE MODAL PHRASES DICTIONARY

Modal phrases in
RAT

Corresponding modal phrases in
ARAT

shall | will
shall | will not

must
must not

may | maybe
may not | may not be

is
is not

be able to |
allow | permit |

to
only

when | if | |
always
never

be |
have |

defined as |
classified as |

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011 5
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

"" , the action phrase "" , the entity phrase "" ,
the unknown phrase "" , and the agent phrase "
" (remember that the Arabic statements are written from
the right to the left). According to the above modal phrase, the
requirement follows syntax type (a). The unknown phrases are
interpreted as extensions of the action phrase. According to the
modal phrases dictionary, this modal phrase is translated into
“shall | will”. The statement is then rearranged as follows:

"" “shall | will” ""
"" .

The software engineer can then translate "" to “The SAP
system”, "" to “send”, and ""
to “the vendor data to the order processing system” with-
out/with minimal ambiguity. Note that the words “shall” and
“will” have the same meaning. The translated statement is:

“The SAP system shall | will send the vendor data to the or-
der processing system”.

5.2 Example 2
Consider the following English statement: “The Web server
must inform administrator of failed login attempts”. This
statement is tokenized into: the agent phrase “The Web serv-
er”, the modal phrase “must”, the action phrase “inform ad-
ministrator”, the unknown phrase “of”, and the entity phrase
“failed login attempts”. According to the above modal phrase,
the requirement follows syntax type (a). The unknown phrases
are interpreted as extensions of the action phrase. According to
the modal phrases dictionary, the modal phrase “must” is
translated into "" . The statement is then rearranged as
follows (remember that the Arabic statements are written from
the right to the left):

“The Web server”""
“inform administrator of failed login attempts”

The software engineer can then translate “The Web server” to
"" , “inform administrator of failed login attempts” to

"" without/with minimal
ambiguity. The translated statement is:

" "

5.3 Example 3
Consider the following English statement: “The payroll system
shall be able to deduct loan amounts from paychecks”. This
statement is tokenized into: the agent phrase “The payroll sys-
tem”, the modal phrase “shall”, the modal phrase “be able to”,
the action phrase “deduct loan amounts”, the unknown phrase
“from”, and the entity phrase “paychecks”. According to the
above modal phrases, the requirement follows syntax type (b).
The unknown phrases are interpreted as extensions of the ac-
tion phrase. According to the modal phrases dictionary, the
modal phrase “shall” is translated into "" and the modal
phrase “be able to” is translated into " |" . The
statement is then rearranged as follows:

“The payroll system”"" " |"
“deduct loan amounts from paychecks”

The software engineer can then translate “The payroll system”
to "" and “deduct loan amounts from pay-
checks” to "" without/with mi-

nimal ambiguity. Since "" is masculine in Arabic, the
software engineer selects "" rather than "" . The
translated statement is:

"
"

5.4 Example 4
Consider the following English statement: “The order
processing system must permit administrator to view daily
transactions”. This statement is tokenized into: the agent
phrase “The order processing system”, the modal phrase
“must”, the modal phrase “permit”, and agent phrase “admin-
istrator”, the modal phrase “to”, and the action phrase “view
daily transactions”. According to the above modal phrases, the
requirement follows syntax type (c). According to the modal
phrases dictionary, the modal phrase “must” is translated into

"" , the modal phrase “permit” is translated into " |
" , and the modal phrase “to” is translated into "" . The
statement is then rearranged as follows:

“The order processing system”"" " | "
“administrator”" "“view daily transactions”

The software engineer can then translate “The order processing
system” to "" , “administrator” to "" , and
“view daily transactions” to "" without/with
minimal ambiguity. Since "" is masculine in Arabic, the
software engineer selects "" rather than "" . The trans-
lated statement is:

""

5.5 Example 5
Consider the following English statement: “The account man-
agement system shall only close an account if the current bal-
ance is zero”. This statement is tokenized into: the agent phrase
“The account management system”, the modal phrase “shall”,
the modal phrase “only”, the action phrase “close an account”,
the modal phrase “if”, and the unknown phrase “the current
balance is zero”. According to the above modal phrases, the
requirement follows syntax type (d). The unknown phrase is
interpreted as a condition. According to the modal phrases
dictionary, the modal phrase “shall” is translated into "" ,
the modal phrase “only” is translated into "" , and the modal
phrase “if” is translated into " | |" . The statement is
then rearranged as follows:

“The account management system”"" " "
“close an account”" | |"

“the current balance is zero”
The software engineer can then translate “The account man-
agement system” to "" , “close an account” to

"" , and “the current balance is zero” to "
" without/with minimal ambiguity. Note that the words

"" , "" , and " " have the same meaning. The translated
statement is:

" | |
"

5.6 Example 6
Consider the following English statement: “Only the payroll

http://www.ijser.org/

6 International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

employees may access the payroll database”. This statement is
tokenized into: the modal phrase “only”, the agent phrase “the
payroll employees”, the modal phrase “may”, and the action
phrase “access the payroll database”. According to the above
modal phrases, the requirement follows syntax type (e). Ac-
cording to the modal phrases dictionary, the modal phrase
“only” is translated into "" and the modal phrase “may” is
translated into "" . The statement is then rearranged as
follows:

" "“the payroll employees”""“access the payroll
database”

The software engineer can then translate “the payroll em-
ployees” to "" and “access the payroll data-
base” to "" without/with minimal
ambiguity. The translated statement is:

"
"

5.7 Example 7
Consider the following English statement: “The customer
standing must always be gold, silver, or bronze”. This state-
ment is tokenized into: the entity phrase “The customer stand-
ing”, the modal phrase “must”, the modal phrase “always”, the
modal phrase “be”, and the unknown phrase “gold, silver, or
bronze”. According to the above modal phrases, the require-
ment follows syntax type (f). The unknown phrase is inter-
preted as a value phrase. According to the modal phrases dic-
tionary, the modal phrase “must” is translated into "" ,
the modal phrase “always” is translated into "" , and the
modal phrase “be” is translated into " |" . The statement
is then rearranged as follows:

“The customer standing”"" "" " | "“gold,
silver, or bronze”

The software engineer can then translate “The customer stand-
ing” to "" and “gold, silver, or bronze” to

"" without/with minimal ambiguity. Since
"" is masculine in Arabic, the software engineer se-

lects "" rather than "" . The translated statement is:
""

5.8 Example 8
Consider the following English statement: “The total sales val-
ue is defined as total item value plus sales tax”. This statement
is tokenized into: the entity phrase “The total sales value”, the
modal phrase “is”, the modal phrase “defined as”, and the ent-
ity phrase “total item value plus sales tax”. According to the
above modal phrases, the requirement follows syntax type (g).
According to the modal phrases dictionary, the modal phrase
“is” is translated into "", and the modal phrase “defined as” is
translated into " |" . The statement is then rearranged
as follows:

 “The total sales value”" | "
“total item value plus sales tax”

The software engineer can then translate “The total sales val-
ue” to "" and “total item value plus sales tax” to

"" without/with minimal ambigui-
ty. Since " " is masculine in Arabic, the software

engineer selects "" rather than "" . The translated
statement is:

""

5.9 Example 9
Consider the following English statement: “The sales tax is
computed on instate shipments”. This statement is tokenized
into: the entity phrase “The sales tax”, the modal phrase “is”,
the action phrase “computed on instate shipments”. According
to the above modal phrase, the requirement follows syntax
type (h). According to the modal phrases dictionary, the modal
phrase “is” is translated into "". The statement is then rear-
ranged as follows:

“The sales tax”“computed on instate shipments”
The software engineer can then translate “The sales tax” to

"" and “computed on instate shipments” to "
" without/with minimal ambiguity. The trans-
lated statement is:

" "

5.10 Results
From the above examples, it is clear that many ambiguities
have been resolved while translating software requirements
between English and Arabic. These include specifying the
agents, the entities, the actions, who performs each action, and
to whom an action is performed. Besides, the intent of each
statement is well understood. Few ambiguities are left to the
software engineer to resolve, which dramatically simplifies the
work of the software engineer.

6 CONCLUSION

Stakeholders typically speak and express software require-
ments in their native language. On the other hand, software
engineers typically express software requirements in English to
programmers who write program using English-like pro-
gramming languages. This requires translating requirements
between the native language of the stakeholders and English
back and forth. This introduces further ambiguities, which af-
fects the length of the whole software process. Unfortunately,
this problem has been overlooked in the literature. To tackle
this problem, this paper introduces the ARAT system. The
ARAT system is analogous to the RAT system [9] that uses
templates to express English software requirements. As illu-
strated by many examples, specifying mappings between both
systems facilitate translation of requirements between English
and Arabic while resolving many ambiguities such as specify-
ing agents and their actions. Since the RAT system uses tem-
plates that enforce following best practices in writing require-
ments documents in English, the ARAT system achieves the
same while writing requirements documents in Arabic. Simi-
larly, since the RAT system has been designed to facilitate the
analysis of English software requirements, the ARAT system
facilitates the analysis of Arabic software requirements. As fu-
ture work, the tool should be tested against more requirements
documents. Observings and suggestions should be taken into
consideration in future versions of the system. We encourage

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 2, Issue 5, May-2011 7
ISSN 2229-5518

IJSER © 2011
http://www.ijser.org

researchers to develop similar systems in their native languag-
es with the aim of facilitating communication between stake-
holders and software engineers using different languages.

REFERENCES
[1] I. Sommerville, Software Engineering. Addison Wesley, 8th edition,

2006.
[2] A. Lamsweerde, R. Darimont, and E. Letier, “Managing Conflicts in

Goal-Driven Requirements Engineering,” IEEE Transactions on Soft-
ware Engineering, vol. 24, no. 11, pp. 908-926, 1998.

[3] S. Schach, Object-Oriented and Classical Software Engineering. McGraw-
Hill, 7th edition, 2006.

[4] C. Rupp, “Requirements and Psychology,” IEEE Software, vol. 19, no.
3, pp.16-18, 2002.

[5] C. Denger, D. Berry, and E. Kamsties, “Higher Quality Requirements
Specifications through Natural Language Patterns,” Proc. IEEE
SwSTE'03, 2003.

[6] K. Wiegers, Software Requirements. Microsoft Press, 2003.
[7] R. Young, Effective Requirements Practices. Addison-Wesley Longman

Publishing Co., 2000.
[8] “IEEE Recommended Practice for Software Requirements Specifica-

tions,” IEEE/ANSI Standard 830-1998, Institute of Electrical and Elec-
tronics Engineers, 1998.

[9] P. Jain, K. Vema, A. Kass, and R. Vasquez, “Automated Review of
Natural Language Requirements Documents: Generating Useful
Warnings with User-extensible Glossaries Driving a Simple State Ma-
chine,” Proc. Second India Software Engineering Conference, 2009.

[10] G. Lami, “QuARS: A Tool for Analyzing Requirements,” Technical
Report CMU/SEI-2005-TR-014, Carnegie Mellon Software, Engineer-
ing Institute, PA, USA, 2005.

[11] I. Hussain, O. Ormandjieva, and L. Kosseim, “Automatic Quality
Assessment of SRS Text by Means of a Decision-Tree-Based Text Clas-
sifier,” Proc. the 7th International Conference on Quality Software, 2007.

[12] A. Ohnishi, “Software Requirements Specification Database Based on
Requirements Frame Model,” Proc. the 2nd International Conference on
Requirements Engineering, 1996.

[13] C. Ben Achour, “Guiding Scenario Authoring, Proc. the 8th European-
Japanese Conference on Information Modeling and Knowledge Bases, 1998.

[14] Raven Software, www.ravensoft.com.
[15] H. Elazhary, “REAS: An Interactive Semi-Automated System for

Software Requirements Elicitation Assistance,” Int. Journal of Engi-
neering Science and Technology, vol. 2, no. 5, pp. 958-962, 2010.

http://www.ijser.org/
http://www.ravensoft.com./

